
The Effect of Network Width on the Performance of
Large-batch Training

Lingjiao Chen1 , Hongyi Wang1 , Jinman Zhao1,
Paraschos Koutris, 1 Dimitris Papailiopoulos2

1Department of Computer Sciences, 2Department of Electrical and Computer Engineering
University of Wisconsin-Madison

Abstract

Distributed implementations of mini-batch stochastic gradient descent (SGD) suf-
fer from communication overheads, attributed to the high frequency of gradient
updates inherent in small-batch training. Training with large batches can reduce
these overheads; however it besets the convergence of the algorithm and the gen-
eralization performance. In this work, we take a first step towards analyzing how
the structure (width and depth) of a neural network affects the performance of
large-batch training. We present new theoretical results which suggest that–for a
fixed number of parameters–wider networks are more amenable to fast large-batch
training compared to deeper ones. We provide extensive experiments on residual
and fully-connected neural networks which suggest that wider networks can be
trained using larger batches without incurring a convergence slow-down, unlike
their deeper variants.

1 Introduction

Distributed implementations of stochastic optimization algorithms have become the standard in large-
scale model training [1, 2, 3, 4, 5, 6, 7]. Most machine learning frameworks, including Tensorflow
[1], MxNet [4], and Caffe2 [7], implement variants of mini-batch SGD as their default distributed
training algorithm. During a distributed iteration of mini-batch SGD a parameter server (PS) stores
the global model, and P compute nodes evaluate a total of B gradients; B is commonly referred
to as the batch size. Once the PS receives the sum of these B gradients from every compute node,
it applies them to the global model and sends the model back to the compute nodes, where a new
distributed iteration begins.

The main premise of a distributed implementation is speedup gains, i.e., how much faster training
takes on P vs 1 compute node. In practice, these gains usually saturate beyond a few 10s of compute
nodes [6, 8, 9]. This is because communication becomes the bottleneck, i.e., for a fixed batch of B
examples, as the number of compute nodes increases, these nodes will eventually spend more time
communicating gradients to the PS rather than computing them. To mitigate this bottleneck, a plethora
of recent work has studied low-precision training and gradient sparsification, e.g., [10, 11, 12].

An alternative approach to alleviate these overheads is to increase the batch size B, since B directly
controls the communication-computation ratio. Recent work develops sophisticated methods that
enable large-batch training on state-of-the-art models and data sets [13, 14, 15]. At the same time,
several studies suggest that large-batch training can affect the generalizability of the models [16], can
slow down convergence [17, 18, 19], and is more sensitive to hyperparameter mis-tuning [20].

Several theoretical results [21, 18, 22, 19, 17] suggest that, when the batch size B becomes larger
than a problem-dependent threshold B∗, the total number of iterations to converge significantly

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

increases, rendering the use of larger B a less viable option. Some of these studies, implicitly or
explicitly, indicate that the threshold B∗ is controlled by the similarity of the gradients in the batch.

102 103

Batch Size
0

20

40

N
um

be
r

of
 E

po
ch

s
to

 C
on

ve
rg

e Width=21, Depth=1
Width=19, Depth=5
Width=17, Depth=10

Figure 1: Impact of neural network structure
on amenability to large-batch training. This is
for fully-connected models with ReLUs on M-
NIST. For each fully-connected network, we
vary the batch size and measure the number
of epochs to converge to 96% accuracy on M-
NIST. Wider and shallower networks require
less epochs to converge than narrower and
deeper ones, which suggests that the former
are more suitable to scale out to more compute
nodes.

In particular, [19] shows that the measure of gradient
diversity directly controls the relationship of B and the
convergence speed of mini-batch SGD. Gradient diversity
measures the similarity of concurrently processed gradi-
ents, and [19] shows theoretically and experimentally that
the higher the diversity, the more amenable a problem
is to fast large-batch training, and by extent to speedup
gains in a distributed setting.

A large volume of work has focused on how the structure
of neural networks can affect the complexity or capacity
[23, 24, 25] of the model, its representation efficiency
[26], and its prediction accuracy [27, 28]. However, there
is little work towards understanding how the structure
of a neural network affects its amenability to distributed
speedup gains.

In this work, through analyzing the gradient diversity of
different network architectures, we take a step towards
addressing the following question: How does the struc-
ture of a neural network affect its amenability to fast
large-batch training?

Our contribution We establish a theoretical connection
between the structure (depth and width) of neural net-
works and their gradient diversity, which is an indicator of how large batch size can become, without
slowing down the speed of convergence [19]. In particular, we prove how gradient diversity varies as
a function of width and depth for two types of networks: 2-layer fully-connected linear and non-linear
neural networks, and multi-layer fully-connected linear neural networks. Our theoretical analysis
indicates that, perhaps surprisingly, gradient diversity increases monotonically as width increases and
depth decreases. On a high-level, wider networks provide more space for the gradients to become
diverse. This result suggests that wider and shallower networks are more amenable to fast large-batch
training compared to deeper ones. Figure 1 provides an illustrative example of this phenomenon.

We provide extensive experimental results that support our theoretical findings. We present ex-
periments on fully-connected and residual networks on CIFAR10, MNIST, EMNIST, Gisette, and
synthetic datasets. In our experimental setting, we fix the number of network parameters, vary the
depth and width, and measure (after tuning the step size) how many passes over the data it takes to
reach an accuracy of ε with batch size B. We observe that for all networks there exists a threshold
B∗, and setting the batch size larger than the threshold leads to slower convergence. The observed
threshold B∗ becomes smaller when the network becomes deeper, validating our theoretical result
that deeper networks are less amenable to fast large-batch training.

To summarize the main message of our work, communication bottlenecks in distributed mini-batch
SGD can be partially overcome not only by designing communication-efficient algorithms, but also
by optimizing the architecture of the neural network at hand in order to enable large-batch training.

2 Related Work

Mini-batch The choice of an optimal batch size has been studied for non-strongly convex models [21],
least square regression [22], and SVMs [29]. Other works propose methods that automatically choose
the batch size on the fly [30, 31]. Mini-batch algorithms can be combined with accelerated gradient
descent algorithms [32], or using dual coordinate descent [33, 34]. Mini-batch proximal algorithms
are presented in [35]. While previous work mainly focuses on (strongly) convex models, or specific
models (e.g., least square regression, SVMs), our work studies how neural network structure can
affect the optimal batch size.

Gradient Diversity Previous work indicates that mini-batch can achieve better convergence rates
by increasing the diversity of gradient batches, e.g., using stratified sampling [36], Determinantal

2

Point Processes [37], or active sampling [38]. The notion of similarity between gradients and how it
affects convergence performance has been studied in several papers [17, 18, 19]. A formal definition
and analysis of gradient diversity is given in [19], which establishes the connection between gradient
diversity and maximum batch size for convex and nonconvex models. To the best of our knowledge,
none of the existing works relates gradient diversity (and thus the optimal batch size) with the
structure of a neural network.

Width vs Depth in Artificial Neural Networks There has been an increasing interest and debate
on the qualities of deep versus wide neural networks. [23] suggests that deep networks have larger
complexity than wide networks and thus may be able to obtain better models. [26] proves that deep
networks can approximate sum products more efficiently than wide networks. Meanwhile, [39] shows
that a class of wide ResNets can achieve at least as high accuracy as deep ResNets. [40] presents
two classes of networks, one shallow and one deep, that achieve similar prediction error for saliency
prediction. In fact, [41] shows that well-designed shallow neural networks can outperform many
deep neural networks. More recently, [27] shows that using a dense structure, wider yet shallower
networks can significantly improve the accuracy compared to deeper networks. In addition, [42]
shows that larger widths leads to better optimization landscape. While previous work has mainly
studied the effect of network structure on prediction accuracy, we focus on its effect on the optimal
choice of batch size for distributed computation.

3 Setup and Preliminaries

In this section, we present the necessary background and problem setup.

Mini-batch SGD The process of training a model from data can be cast as an optimization problem
known as empirical risk minimization (ERM):

min
w

1

n

n∑
i=1

`(w; (xi, yi))

where xi ∈ Rm represents the ith data point, n is the total number of data points, w ∈ Rd is a
parameter vector or model, and `(·; ·) is a loss function that measures the prediction accuracy of the
model on each data point. One way to approximately solve the above ERM is through mini-batch
stochastic gradient descent (SGD), which operates as follows:

w(k+1)B = wkB − γ
(k+1)B−1∑
`=kB

∇fs`(wkB), (3.1)

where each index s` is drawn uniformly at random from [n] with replacement. We use w with
subscript kB to denote the model we obtain after k distributed iterations, i.e., a total number of
kB gradient updates. In related studies there is often a normalization factor included in the batch
computation, but here we subsume that in the step size γ.

Gradient diversity and speed of convergence Gradient diversity measures the degree to which
individual gradients of the loss function are different from each other.
Definition 1 (Gradient Diversity [19]). We refer to the following ratio as gradient diversity

∆S(w) : =

∑n
i=1 ‖∇fi(w)‖22

‖
∑n
i=1∇fi(w)‖22

=

∑n
i=1 ‖∇fi(w)‖22∑n

i=1 ‖∇fi(w)‖22 +
∑
i 6=j〈∇fi(w),∇fj(w)〉

.

The gradient diversity ∆S(w) is large when the inner products between the gradients taken with
respect to different data points are small. Equipped with the notion of gradient diversity, we define a
batch size bound BS(w) for each data set S and each w as follows:

BS(w) := n ·∆S(w).

The following result [19] uses the notion of gradient diversity to capture the convergence rate of
mini-batch SGD.
Lemma 1. [Theorem 3 in [19],Informal] Suppose B ≤ δ · n∆S(w) + 1, ∀w in each iteration. If
serial SGD achieves an ε-suboptimal solution after T gradient updates, then using the same step-size
as serial SGD, mini-batch SGD with batch-size B can achieve a (1 + δ

2)ε-suboptimal solution after
the same number of gradient updates/data pass (i.e., T/B iterations).

3

The above result is true for both convex and non-convex problems, and its main message is that
mini-batch SGD does not suffer from speedup saturation as long as the batch size is smaller than
n · ∆S(w) (up to a constant factor). Moreover, [19] also shows that this is a worst-case optimal
bound, i.e., (roughly) if the batch size is larger than n times the gradient diversity, there exists some
model such that the convergence rate of mini-batch SGD is slower than that of serial SGD.

The main theoretical question that we study in this work is the following: how does gradient diversity
change as neural networks’ structure (depth and width) varies?

Fully-connected Neural Networks We consider both linear and non-linear fully connected net-
works, with L ≥ 2 layers. We denote by K` the width (number of nodes) of the `-th layer, where
` ∈ {0, . . . , L}. The first layer corresponds to the input of dimension d, hence K0 = d. The last
layer corresponds to the single output of the neural network, hence KL = 1. The weights of the
edges that connect the ` and ` − 1 layers, where l ∈ {1, . . . , L}, are represented by the matrix
W` ∈ RK`×K`−1 . For the sake of simplicity, we will express the collection of weights (i.e., the
model) as w = (W1,W2, . . . ,WL).

A general neural network (NN) with L ≥ 2 layers can be described as a collection of matrices
W1, . . . ,WL, where W` ∈ RK`×K`−1 , together with a (generally nonlinear) activation function σ(·).
The output of a NN (or LNN) on input data point xi is then defined as ŷi = WL · σ(· · ·σ(W2 ·
σ(W1 · xi))). There are different types of activation that we study,i.e., tanh(x), the softsign function
x

1+|x| , arctan(x), and the ReLU function max{0, x}. For linear neural networks (LNNs), we denote

W =
∏L
`=1W` = WL ·WL−1 · · ·W1. We will also write W`,p,q to denote the element in the p-th

row and q-th column of matrix W`.

The output of the neural network with input xi is defined as ŷi. Throughout the theory part of this
paper, we will use the square loss function to measure the error, which we denote for the i-th data
point as fi = 1

2 (ŷi − yi)2. Further, we assume that the data is achievable, i.e., there exists W ∗`,p,q
such that the loss function is 0 on each data point when W`,p,q = W ∗`,p,q .

4 Main Results

In this section, we present a theoretical analysis on how structural properties of a neural network, and
in particular the depth and width, influence the gradient diversity, and hence the convergence rate of
mini-batch SGD for varying batch size B. All proofs are left to the Appendix.

In the following derivations, we will assume that the labels {y1, . . . , yn} of the n data points are
realizable, i.e., there exist a network of L layers that on input xi outputs yi. Our results are presented
as probabilistic statements, and for almost all weight matrices.

Warmup: 2-Layer Linear Neural Networks Our first result concerns the case of a simple 2-layer
linear neural network with one hidden layer. To simplify notation, we will denote the width of the
hidden layer with K = K1. Further, Θ(·) and Ω(·) are used in their standard meaning. The main
result can be stated as follows:

Theorem 1. Consider a 2 LNN. Let the weightsWl,p,q,W
∗
l,p,q for l ∈ {1, 2} and xi be independently

drawn random variables, such that their k-th order moments for k ≤ 4 are bounded in a postive
interval. Then, with arbitrary constant probability, the following holds:

BS(w) ≥ Θ(nKd)

Θ(Kn+ dn+Kd)

For sufficiently large n, the above ratio on the batch size scales like Θ(Kd)
Θ(K+d) . This ratio is always

increasing as a function of the width of the hidden layer, which implies that larger width allows for a
larger batch size.

2-Layer Nonlinear Neural Networks As a next step in our theoretical analysis, we analyze general
2-layer NNs with a nonlinear activation function σ.

Theorem 2. Consider a 2-layer NN with a monotone activation function σ such that for every
x we have: −σ(x) = σ(−x), and both |σ(x)| and supx{xσ′(x)} are bounded. Let the weights

4

Wl,p,q,W
∗
l,p,q for l ∈ {1, 2} and xi be i.i.d. random variables from N (0, 1). Then, with high

probability, the following holds:

E[n
∑n
i=1 ||∇fi||22]

E[||
∑n
i=1∇fi||22]

≥ Ω(
Kd2

Kd+K + d
).

where the expectation is over W2,W
∗
2 .

We should remark here that the above bound is weaker than the one obtained for the case of 2-layer
LNNs, since it bounds the ratio of the expectations, and not the expectation of the ratio (the batch
size bound). Nevertheless, we conjecture that the batch size bound concentrates, and thus the above
theorem can approximate the batch size bound well.

Another remark is that several commonly used activation functions in NNs, such as tanh, arctan,
and the softsign function satisfy the assumptions of the above theorem. The same trends can be
observed here as in the case of 2-layer LNNs: (i) larger width leads to a larger gradient diversity, and
thus faster convergence of distributed mini-batch SGD, and (ii) the ratio can never exceed Ω(d).

Multilayer Linear Neural Networks We generalize here our result for 2-layer LNNs to general
multilayer LNNs of arbitrary depth L ≥ 2. Below is our main result.
Theorem 3. Let the weight values Wl,p,q for l ∈ {1, . . . , L} and xi be independently drawn
random variables from N (0, 1). Consider a multilayer LNN where fi = 1

2 (Wxi −W ∗xi)2 =
1
2 (
∏L
`=1W`xi −

∏L
`=1W

∗
` xi)

2. Assuming that K` ≥ 2 for every ` ∈ {0, . . . , L− 1}, and that n is
sufficiently large, then we have:

ρ =
E[n

∑n
i=1 ||∇fi||22]

E[||
∑n
i=1∇fi||22]

≥ L∑L−1
φ=1

L−φ
Kφ−1 + 2L

d−1

. (4.1)

Again, note that the above bound is weaker than the one obtained for the case of 2-layer LNNs, since
it bounds the ratio of the expectations, and not the expectation of the ratio. It is believed that the
denominator and numerator should concentrate around their expectations (as was the case in Theorem
1) and thus ratio of the expectation reflects the expectation of the ratio. Whether this can be proved
remains an interesting open question.

We next discuss the implications of Theorem 3 on the convergence rate of mini-batch SGD. To analyze
the behavior of the bound, consider the simple case where all the hidden layers (l = 1, . . . , L− 1)
have exactly the same width K. In this case, the ratio in Eq. (4.1) becomes:

ρ ≥ 1
L−1

2(K−1) + 2
d−1

= Θ

(
dK

dL+K

)
There are three takeaways from the above bound. First, by increasing the width K of the LNN, the
ratio increases as well, which implies that the convergence rate increases. Second, the effect of the
depth L is the opposite: by increasing the depth, the ratio decreases. Third, the ratio can never exceed
Θ(d), but it can be arbitrarily small. Suppose now that we fix the total number of weights in the LNN,
and then start increasing the width of each layer (which means that the depth will decrease). In this
case, the ratio will also increase.

We conclude by noting that the same behavior of the bound w.r.t. width and depth can be observed if
we drop the simplifying assumption that all layers have the same width.

5 Experiments

In this section, we provide empirical results on how the structure of a neural network (width and
depth) impacts its amenability to large-batch training using various datasets and network architectures.
Our main findings are three-fold:

1. For all neural networks we used, there exists a threshold B∗, such that using batch size
larger than this threshold induces slower convergence;

2. The threshold of wider neural networks is often larger than that of deeper ones;

5

Dataset Synthetic MNIST Cifar10 EMNIST Gisette

datapoints 10,000 70,000 60,000 131,600 6,000

Model linear FC FC/LeNet ResNet-18/34 FC FC

Classes +∞ 10 10 47 2

Parameters 16k 16k / 431k 11m / 21m 16k 262k

Converged Accuracy 10−12 (loss) 96% / 98% 95% 65% 95%
Table 1: The datasets used and their associated learning models and hyper-parameters.

3. When using the same large batch size, almost all wider neural networks need much fewer
epochs to converge compared to their deeper counterparts.

Those findings validate our theoretical analysis and suggest that wider neural networks are indeed
more amenable to large-batch training and thus more suitable to scale out.

Implementation and Setup We implemented our experimental pipeline in Keras [43], and conducted
all experiments on p2.xlarge instances on Amazon EC2. All results reported are averaged from 5
independent runs.

Datasets and Networks Table 1 summarizes the datasets and networks used in the experiments.
In the synthetic dataset, all data points were independently drawn from N (0, 1) as described by our
theory results. A deep linear fully connected neural network (FC) whose weights were generated
from N (0, 1) independently was used to produce the true labels. The task on the synthetic data is a
regression task. We train linear FCs on the synthetic dataset. The real-world datasets we used include
MNIST [44], EMNIST[45], Gisette [46], and CIFAR-10 [47], with appropriate networks ranging
from linear, to non-linear fully connected ones, and to LeNet [48] and ResNet [28].

For each network, we fix the total number of parameters and vary its depth/number of layers L and
width K. For fully connected networks and LeNet, we vary depth L from 1 to 10 and change K
accordingly to ensure the total number of parameters are approximately fixed. More precisely, we fix
the total number of parameters p, and solve the following equations

din ×K + (L− 1)×K2 +K × dout = p.

where din is the dimension of the data and dout is the size of output. For ResNet, we vary two
parameters separately. We first vary the width and depth of the fully connected layers without
changing the residual blocks. Next we fix the fully connected layers and change the number of blocks
and convolution filters in each chunk. We refer to the building block in a residual function described
in [28] as chunk. For ResNet-18/34 architecture, we use [s1, s2, s3, s4] to denote a particular structure,
where s1 represents the number of blocks stacked in the first chunk, s2 is the number of blocks
stacked in the second chunk, etc. For varying depths, we incrementally increase or decrease one
block in each chunk and adjust the number of convolutional filters in each block to meet the fixed
number of parameters requirement.

For each combination of depth and width of a NN architecture, we train the model by setting a
constant threshold on training accuracy for classification tasks, or loss for regression tasks. We then
train the NN for a variety of batch sizes, in range of 2i, for i ∈ {5, · · · , 12}. We tune the step size in
the following way: (i) for all learning rates η from a grid of candidate values, we run the training
process with η for 2 passes over the data; and then (ii) we choose η̂ which leads to the lowest training
loss after two epochs. An epoch represents a full pass over the data.

Experimental Results We first verify whether gradient diversity reflects the amenability to large
batch training. For each linear FC network with fixed width and depth, we measure its gradient
diversity every ten epochs and compute the average. Figure 2(a) shows how the averaged gradient
diversity varies as depth/width changes, while Figure 2(b) presents the largest batch to converge
for each network within a pre-set number of epochs. Both of them increase as the width K of the
networks increases. In fact, as shown in Figure 2(c), the largest batch size that does not impact the
convergence rate grows monotonically w.r.t the gradient diversity. This validates our theoretical
analysis that gradient diversity can be used to capture the amenability to large batch training.

6

K:16
L:1

16
2

16
3

16
4

15
5

15
6

15
7

15
8

14
9

14
10

Structure of Network
0.00
0.02
0.04
0.06
0.08
0.10

G
ra

di
en

t
D

iv
er

si
ty

(a) Gradient Diversity

K:16
L:1

16
2

16
3

16
4

15
5

15
6

15
7

15
8

14
9

14
10

Structure of Network
0

500
1000
1500
2000
2500
3000
3500
4000

La
rg

es
t

Ba
tc

h
Si

ze
fo

r
Fi

xe
d

Ep
oc

hs

(b) Largest Batch Size

0.000 0.025 0.050 0.075 0.100
Gradient Diversity

0

1000

2000

3000

4000

La
rg

es
t

Ba
tc

h
Si

ze

(c) Diversity vs Batch Size
Figure 2: The effect of gradient diversity for linear FCs trained on the synthetic dataset for a regression task. (a)
Gradient diversity for different width/depth (b) Largest batch size to converge to loss 10−12, within a pre-set
number (i.e., 14) of epochs. (c) Largest batch size v.s. gradient diversity.

102 103

Batch Size
0.0

0.5

1.0

N
um

be
r

of
Ep

oc
hs

1e4
K:16, L:1
K:16, L:4
K:15, L:7
K:14, L:10

(a) Synthetic, Linear FC

102 103

Batch Size
0

20

40 K:21, L:1
K:19, L:4
K:18, L:7
K:17, L:10

(b) MNIST, FC

102 103

Batch Size
0

100

200 K:21, L:1
K:19, L:4
K:18, L:7
K:17, L:10

(c) EMNIST, FC

102 103

Batch Size
0

10

20
K:52, L:1
K:51, L:4
K:49, L:7
K:48, L:10

(d) Gisette, FC

102 103

Batch Size
0

50

100 K:143, L:1
K:88, L:4
K:71, L:7
K:61, L:10

(e) MNIST, LeNet

102 103

Batch Size

20

40

60 K:143, L:1
K:88, L:4
K:71, L:7
K:61, L:10

(f) Cifar10, ResNet18, FC

102 103

Batch Size

25

50

75 Num Blocks:[3, 3, 3, 3]
Num Blocks:[5, 5, 5, 5]
Num Blocks:[6, 6, 6, 6]

(g) Cifar10, ResNet18, Res

102 103

Batch Size

20

40
Num Blocks:[3, 4, 6, 3]
Num Blocks:[5, 6, 8, 5]
Num Blocks:[6, 7, 9, 6]

(h) Cifar10, ResNet34, Res

Figure 3: Number of epochs needed to converge to the same loss / accuracy given in Table 1. K represents
width, and L depth. In (f) We fix the residual blocks of ResNet 18 and only vary the fully-connected parts. In (g)
and (h), we fix the fully connected layers and vary the residual blocks of ResNet 18 and ResNet 34.

Next, we study the number of epochs needed to converge when different batch sizes are used for
real-world datasets. First, for almost all network architectures, there exists a batch size threshold,
such that using a batch size larger than this, requires more epochs for convergence, consistent with
the observations in [19]. For example, in Figure 3(b), when the batch size is smaller than 256, the FC
network with width K = 17 and depth L = 10 needs a small number (2 to 3) of epochs to converge.
But when the batch size becomes larger than 256, the number of epochs necessary for convergence
increases significantly, e.g., it takes 50 epochs to converge when batch size is 4096. Moreover, we
observe that the threshold increases as width increases. Again as shown in Figure 3(b), the batch-size
threshold for the FC network with L = 10 is 256, but goes up to 1024 with L = 1. Furthermore,
when using the same large batch size, wider networks tend to require fewer epochs to converge than
the deeper ones. In Figure 3(c), for instance, using the same batch size of 4096, the required epochs
to converge decreases from 211 to 9 as width K increases from 17 to 21. Those trends are similar for
all FC networks we used in the experiments.

When it comes to ResNets and LeNet, the trends are not always as sharp. This is expected since our
theoretical analysis does not cover such cases, but the main trend can still be observed. For example,
as shown in Figures 3(e) and 3(f), for a fixed batch size, increasing the width almost always leads
to a decrease in number of epochs for convergence. Figure 4, depicts the exact number of epochs
to converge for each network architecture, and plots them as a heatmap. It is interesting to see that
for ResNet, there is a small fraction of cases where increase of depth can also reduce the number of
epochs for convergence.

In many practical applications, only a reasonable and limited number of data passes is performed
due to time and resources constraints. Thus, we also study how the structure of a network affects the
largest possible batch size to converge within a fixed number of epochs/data passes to a pre-specified
accuracy. As shown in Figure 5, neural networks with larger width K usually allow much larger
batch sizes to converge within a small, pre-set number of total epochs. This is especially beneficial in

7

1 2 3 4 5 6 7 8 910
Depth of Hidden Layers

32
64

128
256
512

1024
2048
4096Ba

tc
h

Si
ze

0.50.60.70.70.81.01.11.31.51.9
0.60.70.80.81.01.21.41.61.81.9
0.60.80.91.01.21.51.71.92.12.2
0.61.01.11.21.61.72.02.22.42.5
0.71.01.61.51.82.12.32.52.72.8
0.81.31.81.62.12.42.62.83.03.1
1.01.52.01.92.42.73.03.13.43.4
1.11.72.22.22.82.83.33.43.64.1 0.8

1.6

2.4

3.2

4.0

(a) Synthetic, Linear FC

1 2 3 4 5 6 7 8 9 10
Depth of Hidden Layers

32
64

128
256
512

1024
2048
4096

1 1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 2 2
1 1 1 1 1 2 2 2 2 3
1 1 1 2 2 2 2 3 4 4
1 2 2 3 2 3 4 5 5 9
2 2 3 3 4 6 7 8 9 15
3 4 5 7 8 9 11 14 19 26
6 6 9 10 14 15 18 24 25 50

10
20
30
40
50

(b) MNIST, Linear FC

1 2 3 4 5 6 7 8 9 10
Depth of Hidden Layers

32
64

128
256
512

1024
2048
4096

1 1 2 2 3 4 6 9 9 11
2 3 2 3 5 6 8 11 14 15
2 4 5 7 9 9 14 15 20 24
2 2 3 5 7 8 11 15 18 23
3 4 5 7 12 13 24 29 27 47
5 8 13 17 22 26 43 51 62 90
9 13 23 28 44 56 70 92115140
9 15 24 36 48 63 76113130211

40
80
120
160
200

(c) EMNIST, FC

1 2 3 4 5 6 7 8 9 10
Depth of Hidden Layers

32
64

128
256
512

1024
2048
4096

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 2
1 2 1 2 2 2 2 2 2 3
2 2 3 3 3 3 4 4 4 5
4 4 4 5 6 7 6 7 7 8
7 8 9 10 11 13 13 14 16 13
11 12 12 16 18 18 19 21 21 28

5
10
15
20
25

(d) Gisette, FC

1 2 3 4 5 6 7 8 9 10
Depth of Hidden Layers

32
64

128
256
512

1024
2048
4096

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 2 2 2
1 2 2 2 2 3 3 3 4 5
4 4 4 6 7 8 6 9 8 12
9 14 16 18 15 21 20 18 28 28
33 41 36 45 41 48 43 46 44 52
82 81 83 90 82 83 88 96104114

20
40
60
80
100

(e) MNIST, LeNet

1 2 3 4 5 6 7 8 9 10
Depth of Hidden Layers

32
64

128
256
512

1024
2048
4096

17 18 20 20 21 23 23 24 27 28
13 16 16 17 17 18 19 20 21 22
14 15 16 17 18 18 19 20 21 22
12 14 16 16 17 18 19 19 21 23
12 15 16 17 18 19 21 21 23 26
15 17 19 21 23 24 26 27 29 31
27 24 26 28 30 34 35 38 40 44
45 39 42 45 51 52 54 59 64 68 20

30
40
50
60

(f) Cifar10, ResNet18, FC

1 2 3 4 5
Number of Blocks

in Every Chunk

32
64

128
256
512

1024
2048
4096

8 10 13 15 15
7 10 13 15 20
7 9 12 14 18
7 8 11 15 14
8 9 11 15 17
11 13 13 18 16
24 21 22 42 53
41 48 68 77 94 15

30
45
60
75
90

(g) Cifar10, ResNet18, Res

1 2 3 4 5
Number of Blocks

in Every Chunk

32
64

128
256
512

1024
2048
4096

8 10 12 13 14
8 10 12 14 15
8 9 9 12 14
7 8 9 10 13
8 10 11 12 12
12 14 16 17 18
20 18 29 29 32
58 36 38 45 57 10

20
30
40
50

(h) Cifar10, ResNet34, Res

Figure 4: Heatmap on number of epochs needed to converge to loss / accuracy defined in Table 1. We report
the log10 of the epochs for (a) and the real epochs for the others.

K:16
L:1

16
2

16
4

15
6

14
10

Structure of Network

102

103

La
rg

es
t

Ba
tc

h
Si

ze
fo

r
Fi

xe
d

Ep
oc

hs

(a) Synthetic, Linear FC

K:21
L:1

19
4

19
6

18
8

17
10

Structure of Network

103

(b) MNIST, FC

K:21
L:1

19
4

19
6

18
7

17
10

Structure of Network

102

103

(c) EMNIST, FC

K:52
L:1

51
4

50
6

49
7

47
10

Structure of Network

103

(d) Gisette, FC

K:143
L:1

113
2

67
8

64
9

61
10

Structure of Network

102

103

(e) MNIST on LeNet

K:143
L:1

97
3

75
6

64
9

61
10

Structure of Network

102

103

(f) Cifar10, ResNet18, FC

K:64
L:2

52
3

44
4

40
5

36
6

Structure of Network

102

103

(g) Cifar10, ResNet18, Res

K:100
L:2

77
3

64
4

57
5

51
6

Structure of Network

102

103

(h) Cifar10, ResNet34, Res

Figure 5: Largest possible batch size to converge within a fixed number of epochs.

the scenarios of large-scale distributed learning, since increasing the batch size can result in more
speedup gains due to a reduction in the total amount of communication. Finally, we should note that
the largest batch size differs among different networks, as well as different datasets. This is because
gradient diversity is both data-dependent and model-dependent.

6 Conclusion

In this paper, we study how the structure of a neural network affects the performance of large-batch
training. Through the lens of gradient diversity, we quantitatively connect a network’s amenability to
larger batches during training with its depth and width. Extensive experimental results, along with
theoretical analysis, demonstrate that for a large class of neural networks, increasing width leads
to larger gradient diversity and thus allows for a larger batch training that is always beneficial for
distributed computation.

In the future, we plan to explore how a particular structure, e.g., convolutional filters, residual blocks,
etc, affects gradient diversity. From a practical perspective, we argue that it is important to consider
the architecture of a network with regards to its amenability for speedups in a distributed setting.
Hence, we plan to explore how one can fine-tune a network so that large-batch training is enabled,
and communication bottlenecks are minimized. Another direction is to quantitatively study how the
generalization error is affected.

8

